Rapid tsunami force prediction by mode-decomposition-based surrogate modeling
نویسندگان
چکیده
Abstract. This study presents a framework for rapid tsunami force predictions by the application of mode-decomposition-based surrogate modeling with 2D–3D coupled numerical simulations. A limited number large-scale analyses are performed selection scenarios variations in fault parameters to capture distribution tendencies target risk indicators. Then, proper orthogonal decomposition (POD) is applied analysis results extract principal modes that represent temporal and spatial characteristics forces. model then constructed linear combination these modes, whose coefficients defined as functions selected input parameters. example presented demonstrate applicability proposed one tsunami-affected areas during Great East Japan Earthquake 2011. Combining 2D 3D versions stabilized finite element method, we carry out series high-precision different obtain set time history data forces acting on buildings inundation depths. POD construct capable providing equivalent simulation almost instantaneously. Based acceptable accuracy obtained results, it was confirmed useful tool evaluating time-series hydrodynamic buildings.
منابع مشابه
Gradient-enhanced surrogate modeling based on proper orthogonal decomposition
A new method for enhanced surrogate modeling of complex systems by exploiting gradient information is presented. The technique combines the proper orthogonal decomposition (POD) and interpolation methods capable of fitting both sampled input values and sampled derivative information like Kriging (aka spatial Gaussian processes). In contrast to existing POD-based interpolation approaches, the gr...
متن کاملWillingness-to-pay Prediction Based on Empirical Mode Decomposition
Long-term prediction of customer preferences is becoming essential for effective product portfolio design in broad industrial sectors such as automotive, aerospace, consumer electronics, where typical concept-to-release times are long (24-60 months). However, nonlinear and nonstationary evolutions of customer preferences hinder accurate prediction of the futures of customer preferences. This pa...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Empirical Mode Decomposition Based Denoising by Customized Thresholding
Abstract—This paper presents a denoising method called EMDCustom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to imp...
متن کاملModeling of Methane Hydrate Decomposition by Using Chemical Affinity
In this work, experimental kinetics data of methane hydrate decomposition at temperatures ranging from 272.15 to 276.15 K and at pressures ranging from 10 to 30 bars were modeled by using chemical affinity. This model proposed a macroscopic model which is independent of any intermediate mechanism like heat or mass transfer. The results show there is good agreement with experimental data. Al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Natural Hazards and Earth System Sciences
سال: 2022
ISSN: ['1561-8633', '1684-9981']
DOI: https://doi.org/10.5194/nhess-22-1267-2022